
Computer vision system for the chess game
reconstruction

M. Piškorec*, N. Antulov-Fantulin**, J. Ćurić*, O. Dragoljević*, V. Ivanac*, L. Karlović*
*Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

** Division of Electronics, Laboratory for Information Systems, Ruđer Bošković Institute, Zagreb, Croatia
E-mail: matija.piskorec@gmail.com, nino.antulov@irb.hr, jura.curic@gmail.com, ognjen.dragoljevic@gmail.com,

vedran.ivanac@gmail.com, luka.karlovic@gmail.com

Abstract - In this paper we describe the system for real-time
machine vision recognition of chess table and figures. Input
data are two synchronized video sequences from a top-view
and side-view camera showing the game of chess between
two players. The top-view is used mainly for determining
the positions of the figures on the table while side-view
enables correct recognition of figures in cases where they
are not occluded by another figure in front of them. Even in
cases where that happens the top-view helps to track the
occluded figures along the table. No prior knowledge of the
chess rules is used, so there are no assumptions on how and
where particular figures are allowed to move. OpenCV
algorithm implementations are used for most of the
preprocessing and analysis, including the identification of
the chess table and classification of figures with SVM
classifier.

I. INTRODUCTION

Reconstruction of the game of chess from a video
sequence is complex task that requires application of
various algorithms and methods from the field of machine
vision and machine learning. In this article we describe the
ChessVision system that implements all phases needed for
tracking the progress of the chess game: extracting the
static pictures of individual moves from the video
sequence, locating the board and individual fields,
segmentation of figures present on the board and
identifying their exact location and type.

In previous studies [1][2] initial configuration of the
figures on the chess board was known and the camera was
mounted on top-view of the stationary chess board. Many
computer vision systems for Chinese chess [3][4] have
also been successfully made. Development of research
and algorithms in computer vision field made chess vision
problem even more intriguing to the research community
[5] for constructing autonomic chess playing robots based
on computer vision [6][7].

In contrast to Chinese chess where figures are mainly
two dimensional objects we have constructed chess vision
system for normal chess figures used by World Chess
Federation, although not with standard board. We have
adapted the board to have distinct green and red squares,
and have used two synchronized cameras placed in top-
view and side-view of the stationary chess board. Our
system does not imply any rules of chess figure moves.
Initial configuration of figures on chess board is also not
known. Furthermore, top-view camera cannot be used for

figure recognition and side-view camera has problem of
perspective distortion and overlapping figures. For that
reason we used the top-view camera for figure detection
and side-view camera for figure recognition.

In next section we describe implementation of the
chess vision system. We extract static pictures that define
each chess move. For each chess move we detect start and
end positions on the board and recognize the figures
involved in the move.

II. DESCRIPTION OF THE IMPLEMENTATION

Systems for chess recognition is developed in C++
programming language with extend usage of OpenCV
libraries. Architecture of system consists of graphical
user interface and components specialized for solving
subproblems in chess recognition: Extraction of static
picture, Detection of board and fields, Figure
segmentation, Detection of figure positions and Figure
recognition. Everything begins with creating video
sequences of some chess game and preprocessing them
with component “Extraction of static pictures”. Results
are represented in sequence of static images from top and

Figure 1. Different boards on which we tested the ChessVision
system. The (a) and (b) are examples where the figures are of the

same material as the board. That makes the segmentation of
individual figures harder so we used board that is significantly

different from the figures.

side camera that represents static moments between
movements in game. “Detection of board and fields”
component use images with empty chess board from top
and side camera to determine the positions of the fields
on the images. The result is the coordinates of fields in
top and side image. This is important because it provides
information for figure segmentation and figure position.
Purpose of “Figure segmentation” is to use pairs of side
images from previous and current static movement and to
prepare extracted segment of picture for recognition.
“Figure segmentation” component uses the knowledge of
“Detection of board and fields” and “Detection of figure
positions”. “Detection of figure positions” component
uses the static images from top camera and knowledge of
chess fields on image to determine if the field is empty or
occupied with figure. In the end, “Figure recognition”
component uses segmented image parts to recognize type
and color of the figure.

A. Extractions of static pictures

Figure detection and classification components
cannot operate on images where player hand obscures
figures or board fields. While player hand moves over the
board, it is considered that valid figure move has not been
completed yet. Static image extraction component detects
any movement over the chessboard, waits for the
movement to complete, then raises event which notifies
other components about static board situation.

Static board situation is detected by comparing
neighboring or nearby video frames. When frame
difference is below specified threshold, for a specified
number of frames, it is considered that static image has
been detected.

Component can operate on two channels
simultaneously (top and side view camera), raise separate
events for each channel, or both channels simultaneously
(when static image is detected on both).

Image difference is rated by subtracting pixel values
across entire images, or by limiting subtraction to a
specified region of interest (exact chessboard location on
the video stream). Limiting image difference rating to a
region of interest eliminates part of camera noise, which
decreases problems with false detections. Images can be
preprocessed to suppress noise (Gaussian blur).

Initial video frame is stored as a reference frame.
Reference frame is then compared with next frame in
sequence. If rated difference is above specified static
threshold, it is assumed that movement is currently
present at connected video stream. Reference frame is
deleted and the next frame is set as a new reference
frame. Process continues until rated difference between
reference frame and next in sequence drops below static
threshold (assumingly, due to lack of movement in front
of the camera). Processing advances to the next frame,
but old reference frame is now kept. While rated
difference between reference frame, and newest in
sequence is below specified static threshold, old reference
frame is kept. When specified number of frames (with
rated difference in relation to the reference frame below
static threshold) is processed, static condition is declared
on that camera channel. Event which indicates static
board condition is raised, and an image from the middle
of the frame interval between reference frame and newest
processed frame (one which triggered static condition) is
delivered to other components subscribed to receive static
condition indication events.

Static condition is signaled only once. Reference
frame is replaced as soon as new movement occurs.
Described algorithm ensures that a slow movement can't
be mistaken for a static board condition. However, if a
player holds his hand very still over the chessboard,
obscuring the camera view, false static condition can and
will be triggered. This problem is possible but rare if
normal game play is maintained.

Possible system upgrade could include hand color
detection, but hand color can be similar to color of
figures, so only large enough connected components
should be detected as a human hand. Another upgrade
could be implemented using board detection itself (with
every board field and line), constantly running, to
indicate hand over the chessboard, when there is a failure
detecting some of the board elements). This approach is
very computational complex, and needs to be tested, if
capable to run in real time. Most simple possible upgrade
is adaptive static threshold computation (to compensate
for the lighting changes).

Most important component parameters are static
detection threshold T and number of static frames
required to declare a static board condition N. Optimal
parameters need to be determined for both camera
channels. For the purpose of testing, only one channel is
used. Supplied video resolution is 640×484 pixels at 5
frames per second. Entire video sequence contains 74 real
chess moves, with at least 2 seconds delay between
moves.

First test is displayed at Figure 3. Chess figure
movement successful detection rate is observed when
varying number of required static consecutive frames
needed to declare a static board condition N. Static
detection threshold T is set fixed to 4×106. Static
detection threshold T is a unitless value, as it represents
total difference between all RGB pixel values of two

Figure 2. The overview of the implementation.

compared frames. In this non-normalized form, number is
dependent on video resolution and needs to be
recalculated if video resolution changes.

It is determined that the optimal number of required
static consecutive frames N is 8.

Second test is displayed at Figure 4. Chess figure
movement successful detection rate is observed when
varying static frame threshold T. Number of static frames
required to declare a static board condition N is set fixed
to 8.

It is determined that the optimal static frame threshold
value T is about 4.5×106.

Although optimal component parameters are
determined as above, by observing Figures 3. and 4. it
can be seen that both parameters can be set to a broader
range of values and still achieve 100% accuracy.

If the players played chess even faster than 2 seconds
between moves, or if video frame rate dropped below 5
frames per second, graph segment displaying 100%
success rate on Figure 3. would become narrower, and
finding right parameter would be more difficult. If
camera noise would increase, graph segment displaying

100% success rate on Figure 4. would become narrower,
and finding right parameter would be more difficult.

It is shown that this simple algorithm can effectively
detect chess moves, in non extreme conditions (with
constant lighting).

B. Board detection

Before any further processing, it is necessary to locate
the board, and the coordinates of individual squares. With
the restriction that the board will not move, it is sufficient
to perform detection only once at the beginning. After the
board is detected, the functionality to determine which
pixel belongs to particular square is provided. Such
functionality is needed in further steps of processing and
analysis.

To avoid the influence of chess pieces on the board
detection, the restriction that the board must be empty at
the beginning is introduced. Before the process of board
detection, the image preparation and preprocessing is
needed. As the squares are red and green (a contrasting
colors), the first step is to extract the red channel. Ideally,
the red squares would have maximum value while the
green squares would have minimum value of lightness
intensity. Because of influence of the noise, that's not the
case, and to obtain the binary image the adaptive
threshold is used. For the purpose of robustness, the
adaptive threshold parameters (window size and a
subtraction constant) are determined iteratively at the
runtime. After obtaining the binary image, the board
detection is performed.

The following approaches are considered and tested:

• Connected components - rejected due a lower
percentage of success; the problem of determining
borders and mapping of the squares.

• Hough transform - rejected because the method
is unsuitable due to image distortion (lines are not
straight); extremely sensitive to noise, the problem of
grouping lines.

• OpenCV embedded function - the chosen
method, with certain modifications; validation and
extrapolation.

For detection of internal corners of the chessboard the
OpenCV built-in function cvFindChessboardCorners is
used. The function was originally intended for calibrating
the camera, but due to its specific purpose it can be
applied to a given problem.

Although the function uses an adaptive threshold,
which itself also adjusts the parameters, it turns out that
function itself gives very poor results over the original
image. Therefore, the function uses already prepared
binary images.

As the function only finds the inner corners, it is
necessary to extrapolate those on the border.
Extrapolation of external corners is done by reflection of
the second layer over the first layer of the inner corners.

Figure 3. Chess figure movement detection success rate, when
varying number of required static consecutive frames N, using
fixed static frame threshold (T = 4×106).

Figure 4. Chess figure movement detection success rate, when
varying static frame threshold T, using fixed number of required
static consecutive frames (N = 8).

Higher order extrapolation is possible but it gives worse
results due to errors in the corners positions.

It's not uncommon that the function returns a set of
corners as a complete and correct, but it's actually
deformed and incorrect. It is therefore necessary to
validate the returned set of corners. Validation is done in
a way to traverse through the points (corners) while
trying to locate a new point on the current line. If the new
point deviates more than a given threshold from the
current line, the point is declared as the beginning of a
new line. After traversing all the points, the number of
lines is checked to be within the given limits. The
parameters of the current line are obtained as the best
approximation of a set of points by a line. Threshold is
expressed as the relative measure compared to the
average length of a line segment that is given by a ratio of
a line length and the number of corresponding points.

C. Feature extraction

In order to determine the change on the board after
one players move, two adjacent images (ones that
determine this particular move) are subtracted. For
example, on Figure 6. we can see that subtraction of
previous and current state image, (a) and (b) gives result
image (c) that is further converted in the grayscale image.
Simple RGB to grayscale conversion results in (d). It can
be seen that the red part of subtracted image is more
prominent than the green one. Therefore, the RGB
subtraction image is transformed into HSV (hue,
saturation, value) space that is color-invariant and the V-
channel (e) is used for further processing. Next step is
image binarization in order to eliminate noise and
shadow. Later steps showed that the higher threshold is
better, despite the fact that some figure pixels will be lost.

In order to extract figure that had been moved, we
should find minimal perimeter rectangle that contains key
figure. The idea is to search the result binary image (f)
pixel by pixel in order to determine coordinates of
rectangle that contains the most of white pixels. The
search is performed with pre-defined rectangle sides and
search-step, i.e. the length of the rectangle shift after one
iteration. Using lower values of shift will result in more
accurate, but slower search. After complete search, the
coordinates are found and the most of figure pixels are in
rectangle defined with those coordinates (upper left
corner) and its predefined side lengths. Next step is

adjusting of rectangle side lengths. As long as there is a
single outer white pixel near some of the rectangle side
the rectangle is expanding. On the other hand, as long as
there aren’t any white inner pixels near some of the
rectangle side the rectangle is contracting. The resulting
rectangle is shown on (g).

Next step is to find whether the rectangle contains
some figure or is empty. This can be easily done by
subtracting image of the current position and image of
empty chess board within area defined by the rectangle. If
the energy of the subtracted part of picture is larger than
some threshold, we assume that at current point, some
figure is placed on area defined by the rectangle. Part of
current state image bounded by the rectangle is used as
classifier input and has to be classified. If the energy of
subtracted image is lower than threshold, the reign of
interest (part of image within the rectangle) is considered
empty and no classification is needed since we know that
the field is empty.

Previous step shows how to deal with only one
change between two moves in a game. But, in a particular
move, there are always two changes on the board since
figure that has been moved by a current player has its
start and end position, hence the change appears in two
places. In order to find the next region of interest (part of
image within the new rectangle), one should repeat
previous procedure. Without any modifications, that
would be useless, hence the same region of interest would
be found. So, prior to repeating the procedure all pixels
within the first region of interest should be set to zero,
thus, they will represent an area with zero white pixels
and repeating the procedure new region of interest will be
found. This region represents the other area where change
occurs.

Problem of this approach is the situation when figures
are overlapping. In this situation, the algorithm would
find only one region of interest which would consist of
real two regions of interest. So, it is impossible to
determine which field is empty -start position of current
player’s figure and which field is its end position. For this
purpose upper camera was used because from its position
it is easy to determine which fields are empty and which
are not.

Figure 6. The segmentation process.

Figure 5. The correct set of corners.

D. Detection of figure position

One of problems that must be solved in order to create
chess recognition system is to determine figure positions
on chess board. Viewpoint of top camera gives good view
on figure positions on chess board because overlap of
figures is not possible. First image from top camera is
transformed to gray scale color scheme and then process
of detecting figures is conducted for each field of chess
board where the energy of field is compared with
empirical defined threshold. If energy of field is less than
threshold then field is empty and in other case it is
occupied with figure. Energy of field is calculated based
on sum of pixel values that belong to field. Value of pixel
is defined on domain from 0 to 255. Where 0 represents
black and 255 white color. Component is using result of
board detection component that consists of coordinates of
chess board fields. Based on coordinates of field it is
possible to connect field in picture with field position on
board, so as result of detection of figure positions the
matrix is produced. Matrix dimensions are as dimensions
of chess board (8x8) and each element defines one field
with value 1 if field is occupied with figure and 0 if it is
not. During implementation we used test set of pictures
from top camera to define best threshold. Threshold is not
uniquely defined and it depends on real environment and
illumination of chess board.

E. Figure recognition

As there are six different figure types and two colors,
the segmented figures are classified into one of 12 distinct
classes. To obtain images suitable for training we used
move sequences that have only one of the figures on the
board. The preparation of move sequences was manual so
we could obtain relatively low number of training images
for each class. For that reason we decided to use Support
Vector Machine (SVM) classifier [9][16] that shows good
results even with the low number of training samples [10].
We used implementation provided with the OpenCV
library.

The quality of the classification was tested on 96
image samples obtained by the segmentation process.
Feature vector for each sample is obtained by converting
each image to grayscale representation, scaling it to 32x32
pixels and then putting each row side-by-side. No
additional feature extraction was performed. The resulting
1024 elements vectors with values ranging from 0 to 255
were used as an input to SVM classifier.

The Gaussian radial base function was used as a kernel
for transforming the samples

�(�� , ��) = ��� �−���� − ����� , � > 0

where γ determines the width of the radial function.
Large values of gamma correspond to narrow radial
functions that too specific and usually result in large
number of false negative classifications. In comparison,
small values correspond to wide radial functions that are
not specific enough, and so produce large number of false
positives. The weight coefficients w and offset b should
satisfy constraints

	�
���� + �
 ≥ 1 − � �� � = 1, 2, …

where ξ is the penalty for classification into a wrong
class. The optimal weight coefficients minimize the
criterion function

�
�
 =
1

2
��� + � ���

�

where the C parameter determines the penalty for each
sample classified into a wrong class. Penalty is crucial for
avoiding the over fitting of the classifier on the training
samples.

To find optimal values for the parameters γ and C, the
initial set was divided into 60 samples for training and 36
samples for testing (ratio of 5/3 for every class). Figure 8.
shows that γ parameter with value from 0.1 to 10 performs
equally well regardless of the penalty C, but that even
better results could be achieved by using γ of 0.01 and
penalty C appropriately high.

The optimal parameters (γ = 0.01 and C = 100) were
tested with varying ratio of training/testing samples.
Figure 9. shows that good results are achieved even with
the relatively low number of training samples. The
fluctuations for ratios 6/8 and 7/8 are due to the low
number of testing samples.

Figure 8. Number of succesfully classified samples in dependence on

the parameters γ and C.

Figure 7. Image samples obtained by our segmentation method that
we used for training the SVM classifier. There are eight samples for

each of 12 classes.

F. Graphical interface

Figure 10. shows graphical user interface of chess
vision project. It consists of virtual view of chess board
with figures that represents state of chess board in real
world. In bottom right corner is box that represents
abstract view of chess board. Each element in box
represents one fields of real chess board. 0 means that
field is empty and 1 means that field is occupied with
figure. The information is obtained from the
of figure positions“ component. In top right corner are
button for next move and label that shows number of
played movements since beginning of chess match.

III. TESTING AND ANALYSIS

To test the efficiency of the system we performed
analysis on the video sequence of 63 moves.
the moves do not correspond to the legal chess
there are situations where multiple figures appear
disappear from the board. In the following chapters we
describe in detail some of the typical situations and give
approximate statistics of success.

A. Example test cases

The Figure 11. shows several examples of how the
board state changes between the moves. Figures (a) and
(b) show a move where white bishop from the field C5
moves to the field C7. Although it now
queen on the field C8, the result on the figure (c) shows
that the system correctly identifies the situation because it

Figure 9. Percentage of succesfully classified samples when
using different number of training samples.

Figure 10. Graphical user inaterface for the ChessVision system.

graphical user interface of chess
of virtual view of chess board

with figures that represents state of chess board in real
world. In bottom right corner is box that represents
abstract view of chess board. Each element in box
represents one fields of real chess board. 0 means that

s empty and 1 means that field is occupied with
obtained from the „Detection

. In top right corner are the
button for next move and label that shows number of

f chess match.

ESTING AND ANALYSIS

To test the efficiency of the system we performed
analysis on the video sequence of 63 moves. Majority of

the legal chess moves, so
there are situations where multiple figures appear or

. In the following chapters we
describe in detail some of the typical situations and give

several examples of how the
board state changes between the moves. Figures (a) and
(b) show a move where white bishop from the field C5
moves to the field C7. Although it now covers the black

, the result on the figure (c) shows
the system correctly identifies the situation because it

is apparent from the top camera that the
change the position, so it is safe to assume that the queen
is in the same position as the move before.

Figures (d) and (c) show a different sequence of
moves where several figures change position. In this case
the system correctly identifies the
king on the field G1, black bishop on field D4 and white
rook on the field A1, but it fail
black bishop on the field G7 with the black pawn on the
field G6 and the white pawn on the field G7. Instead, it
identifies them as two black bishops. The reason is that
the occupancy of the field G7 didn’t change (it is still
occupied but with a different figure) and
overlap of the two figures the
incorrectly classified front black pawn as a black bishop.

B. Analysis of achieved accuracy

Table I. shows the success rate of various parts of the
chess reconstruction process as obtained from the test
video sequence. As expected, rather high success rate can
be achieved when there is no significant overlap between
the figures as viewed from the side camera. The same is
valid for the process of segmentation and recognition. On
the other hand, because of the use of top view camera, we
achieved perfect results when detecting the occupancy of
a particular field.

IV. CONLUSION

The goal of this paper was to describe implementation
of a system that is able to reconstruct a chess board state
based solely on video sequences obtained from two
cameras. We have used standard chess figures with

TABLE I. SUCCESFULLY IDENTIFIE

Move reconstruction (no overlap)
Move reconstruction
Figure segmentation
Figure classification
Field occupation detection

Percentage of succesfully classified samples when

umber of training samples.

Graphical user inaterface for the ChessVision system.

Figure 11. Two examples of chess moves
the states before the move, (b) and (e) after the move, and (c) and

(d) states after the move as recognized by the system.

is apparent from the top camera that the queen did not
change the position, so it is safe to assume that the queen
is in the same position as the move before.

Figures (d) and (c) show a different sequence of
moves where several figures change position. In this case
the system correctly identifies the disappearance of black
king on the field G1, black bishop on field D4 and white
rook on the field A1, but it fails to detect the swap of
black bishop on the field G7 with the black pawn on the
field G6 and the white pawn on the field G7. Instead, it
identifies them as two black bishops. The reason is that
the occupancy of the field G7 didn’t change (it is still

ied but with a different figure) and because of the
the two figures the segmentation subsystem

incorrectly classified front black pawn as a black bishop.

Analysis of achieved accuracy

Table I. shows the success rate of various parts of the
chess reconstruction process as obtained from the test

As expected, rather high success rate can
be achieved when there is no significant overlap between

e side camera. The same is
valid for the process of segmentation and recognition. On
the other hand, because of the use of top view camera, we
achieved perfect results when detecting the occupancy of

ONLUSION

The goal of this paper was to describe implementation
of a system that is able to reconstruct a chess board state
based solely on video sequences obtained from two
cameras. We have used standard chess figures with

UCCESFULLY IDENTIFIED EVENTS

rlap) 42 / 44 = 95.5 %
53 / 63 = 84.1 %
58 / 63 = 92.1 %
57 / 63 = 90.5 %
63 / 63 = 100%

Two examples of chess moves. Images (a) and (d) show

the states before the move, (b) and (e) after the move, and (c) and
(d) states after the move as recognized by the system.

adopted chess board (red and green squares). Whole
system was written in C++ and OpenCV library was used.
System is divided into few modules that communicate
with each other over a controller module. Extraction of
static pictures delivers picture that identify each figure
move. For each move we detect positions on the board
from top-view camera and extract figures bounding box
from side-view camera. Recognition is made by using
kernel SVM classifier. Our chess vision system is a
memory state system which updated chess states only for
new moves. Therefore if new moves cover old figures in
side-view camera memory is used for chess state
reconstruction. But if a new move is covered with old
figures chess state reconstruction from side-view camera
is not possible. Top view camera is only used for detection
of moves in a chess game. Chess vision system showed
solid performance on our limited number of video
sequences.

ACKNOWLEDGMENT

This project was made as a part of “Machine vision”
class on the Faculty of Electrical Engineering and
Computing, University of Zagreb, that authors attended in
the winter semester of 2009/2010. We would like to thank
Professor Slobodan Ribarić and assistant Marijo Maračić
for their generous help and assistance during the course of
the project.

REFERENCES
[1] A.K.Farahat, A.M.Hassan and M.A.El-Nagar, A Vision System fo

Chess Playing Robots, 46th IEEE Midwest Symposium On
Circuits and Systems, December 27-30,2003

[2] David Urting, Yolande Berbers (2003), MarineBlue: A Low-Cost
Chess Robot, Proceedings of the IASTED International
Conference on Robotics and Applications

[3] H. Zhu, J. Lei and X. Tian, A pattern recognition system based on
computer vision — The method of Chinese chess recognition,
Granular Computing, 2008. GrC 2008. IEEE International
Conference, doi: 10.1109/GRC.2008.4664655

[4] P. Hu, Y. Luo and C. Li, Chinese Chess Recognition Based on
Projection Histogram of Polar Coordinates Image and FFT,
Pattern Recognition, 2009. CCPR 2009. Chinese Conference, doi:
10.1109/CCPR.2009.5344001

[5] J.E. Neufeld, T.S. Hall, Probabilistic location of a populated
chessboard using computer vision, Circuits and Systems
(MWSCAS), 2010 53rd IEEE International Midwest Symposium,
doi:10.1109/MWSCAS.2010.5548901

[6] Y. Jia, Y. Duan, D. Wang, L. Xue, Z. Liu and W. Wang, Pieces
Identification in the Chess System of Dual-Robot Coordination
Based on Vision, Web Information Systems and Mining (WISM),
2010 International Conference, doi:10.1109/WISM.2010.124

[7] S. Zhao, C. Chen, C. Liu, M. Liu, Algorithm of location of chess-
robot system based on computer vision, Control and Decision
Conference, 2008. CCDC 2008. Chinese, doi:
10.1109/CCDC.2008.4598325

[8] S. Blunsden, “Chess recognition”, undergraduate dissertation,
University of Plymouth, 2003.

[9] C. Lin, C. Hsu and C. Chang, “A practical guide to support vector
clasiffication”, Technical report, Department of Computer
Science, National Taiwan University, July 2003.

[10] A. Kaehler and G. Bradski, “Learning OpenCV”, O’Reilly, 2008.

[11] OpenCV 1.0, “OpenCV 1.0 api reference”, URL:
http://cgi.cs.indiana.edu/~oleykin/website/OpenCVHelp/

[12] OpenCV 2.0, “OpenCV 2.0 api reference”, URL:
http://opencv.willowgarage.com/documentation/index.html

[13] B.G. Schunk, R. Jain and R. Kasturi, “Machine vision”, MIT Press
and McGraw-Hill, 1995.

[14] S. Ribarić, “Materijali za kolegij Računalni vid”, unpublished

[15] T. Graf, A. Knoll and A. Wolfram, “Fuzzy invariant indexing: a
general indexing scheme for occluded object recognition”, Signal
Processing Proceedings ICSP ’98, vol. 2, 1998, pp 908-911

[16] J. Shawe-Taylor, N. Cristianini, “Support Vector Machines and
other kernel-based leraning methods”, Cambridge University
Press,2000.

