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Abstract - In this paper we describe the system for real-time 
machine vision recognition of chess table and figures. Input 
data are two synchronized video sequences from a top-view 
and side-view camera showing the game of chess between 
two players. The top-view is used mainly for determining 
the positions of the figures on the table while side-view 
enables correct recognition of figures in cases where they 
are not occluded by another figure in front of them. Even in 
cases where that happens the top-view helps to track the 
occluded figures along the table. No prior knowledge of the 
chess rules is used, so there are no assumptions on how and 
where particular figures are allowed to move. OpenCV 
algorithm implementations are used for most of the 
preprocessing and analysis, including the identification of 
the chess table and classification of figures with SVM 
classifier. 

I. INTRODUCTION 

Reconstruction of the game of chess from a video 
sequence is complex task that requires application of 
various algorithms and methods from the field of machine 
vision and machine learning. In this article we describe the 
ChessVision system that implements all phases needed for 
tracking the progress of the chess game: extracting the 
static pictures of individual moves from the video 
sequence, locating the board and individual fields, 
segmentation of figures present on the board and 
identifying their exact location and type. 

In previous studies [1][2] initial configuration of the 
figures on the chess board was known and the camera was 
mounted on top-view of the stationary chess board. Many 
computer vision systems for Chinese chess [3][4] have 
also been successfully made.  Development of research 
and algorithms in computer vision field made chess vision 
problem even more intriguing to the research community 
[5] for constructing autonomic chess playing robots based 
on computer vision [6][7].   

In contrast to Chinese chess where figures are mainly 
two dimensional objects we have constructed chess vision 
system for normal chess figures used by World Chess 
Federation, although not with standard board. We have 
adapted the board to have distinct green and red squares, 
and have used two synchronized cameras placed in top-
view and side-view of the stationary chess board. Our 
system does not imply any rules of chess figure moves. 
Initial configuration of figures on chess board is also not 
known.  Furthermore, top-view camera cannot be used for 

figure recognition and side-view camera has problem of 
perspective distortion and overlapping figures. For that 
reason we used the top-view camera for figure detection 
and side-view camera for figure recognition.  

In next section we describe implementation of the 
chess vision system. We extract static pictures that define  
each chess move. For each chess move we detect start and 
end positions on the board and recognize the figures 
involved in the move.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. DESCRIPTION OF THE IMPLEMENTATION 

Systems for chess recognition is developed in C++ 
programming language with extend usage of OpenCV 
libraries. Architecture of system consists of graphical 
user interface and components specialized for solving 
subproblems in chess recognition: Extraction of static 
picture, Detection of board and fields, Figure 
segmentation, Detection of figure positions and Figure 
recognition. Everything begins with creating video 
sequences of some chess game and preprocessing them 
with component “Extraction of static pictures”. Results 
are represented in sequence of static images from top and 

 
Figure 1.  Different boards on which we tested the ChessVision 
system. The (a) and (b) are examples where the figures are of the 

same material as the board. That  makes the segmentation of 
individual figures harder so we used board that is significantly 

different from the figures. 



side camera that represents static moments between 
movements in game.  “Detection of board and fields” 
component use images with empty chess board from top 
and side camera to determine the positions of the fields 
on the images. The result is the coordinates of fields in 
top and side image. This is important because it provides 
information for figure segmentation and figure position. 
Purpose of “Figure segmentation” is to use pairs of side 
images from previous and current static movement and to 
prepare extracted segment of picture for recognition. 
“Figure segmentation” component uses the knowledge of 
“Detection of board and fields” and “Detection of figure 
positions”. “Detection of figure positions” component 
uses the static images from top camera and knowledge of 
chess fields on image to determine if the field is empty or 
occupied with figure. In the end, “Figure recognition” 
component uses segmented image parts  to recognize type 
and color of the figure.  

 

 

 

 

 

 

 

 

 

 

A. Extractions of static pictures 

Figure detection and classification components 
cannot operate on images where player hand obscures 
figures or board fields. While player hand moves over the 
board, it is considered that valid figure move has not been 
completed yet. Static image extraction component detects 
any movement over the chessboard, waits for the 
movement to complete, then raises event which notifies 
other components about static board situation. 

Static board situation is detected by comparing 
neighboring or nearby video frames. When frame 
difference is below specified threshold, for a specified 
number of frames, it is considered that static image has 
been detected. 

Component can operate on two channels 
simultaneously (top and side view camera), raise separate 
events for each channel, or both channels simultaneously 
(when static image is detected on both). 

Image difference is rated by subtracting pixel values 
across entire images, or by limiting subtraction to a 
specified region of interest (exact chessboard location on 
the video stream). Limiting image difference rating to a 
region of interest eliminates part of camera noise, which 
decreases problems with false detections. Images can be 
preprocessed to suppress noise (Gaussian blur).  

Initial video frame is stored as a reference frame. 
Reference frame is then compared with next frame in 
sequence. If rated difference is above specified static 
threshold, it is assumed that movement is currently 
present at connected video stream. Reference frame is 
deleted and the next frame is set as a new reference 
frame. Process continues until rated difference between 
reference frame and next in sequence drops below static 
threshold (assumingly, due to lack of movement in front 
of the camera). Processing advances to the next frame, 
but old reference frame is now kept. While rated 
difference between reference frame, and newest in 
sequence is below specified static threshold, old reference 
frame is kept. When specified number of frames (with 
rated difference in relation to the reference frame below 
static threshold) is processed, static condition is declared 
on that camera channel. Event which indicates static 
board condition is raised, and an image from the middle 
of the frame interval between reference frame and newest 
processed frame (one which triggered static condition) is 
delivered to other components subscribed to receive static 
condition indication events. 

Static condition is signaled only once. Reference 
frame is replaced as soon as new movement occurs. 
Described algorithm ensures that a slow movement can't 
be mistaken for a static board condition. However, if a 
player holds his hand very still over the chessboard, 
obscuring the camera view, false static condition can and 
will be triggered. This problem is possible but rare if 
normal game play is maintained.  

Possible system upgrade could include hand color 
detection, but hand color can be similar to color of 
figures, so only large enough connected components 
should be detected as a human hand. Another upgrade 
could be implemented using board detection itself (with 
every board field and line), constantly running, to 
indicate hand over the chessboard, when there is a failure 
detecting some of the board elements). This approach is 
very computational complex, and needs to be tested, if 
capable to run in real time. Most simple possible upgrade 
is adaptive static threshold computation (to compensate 
for the lighting changes). 

Most important component parameters are static 
detection threshold T and number of static frames 
required to declare a static board condition N. Optimal 
parameters need to be determined for both camera 
channels. For the purpose of testing, only one channel is 
used. Supplied video resolution is 640×484 pixels at 5 
frames per second. Entire video sequence contains 74 real 
chess moves, with at least 2 seconds delay between 
moves. 

First test is displayed at Figure 3. Chess figure 
movement successful detection rate is observed when 
varying number of required static consecutive frames 
needed to declare a static board condition N. Static 
detection threshold T is set fixed to 4×106. Static 
detection threshold T is a unitless value, as it represents 
total difference between all RGB pixel values of two 

 
Figure 2.  The overview of the implementation. 



compared frames. In this non-normalized form, number is 
dependent on video resolution and needs to be 
recalculated if video resolution changes. 

 

 

 

 

 

 

 

 

 

 

 

 

It is determined that the optimal number of required 
static consecutive frames N is 8. 

Second test is displayed at Figure 4. Chess figure 
movement successful detection rate is observed when 
varying static frame threshold T. Number of static frames 
required to declare a static board condition N is set fixed 
to 8. 

 

 

 

 

 

 

 

 

 

 

 

It is determined that the optimal static frame threshold 
value T is about 4.5×106. 

Although optimal component parameters are 
determined as above, by observing Figures 3. and 4. it 
can be seen that both parameters can be set to a broader 
range of values and still achieve 100% accuracy. 

If the players played chess even faster than 2 seconds 
between moves, or if video frame rate dropped below 5 
frames per second, graph segment displaying 100% 
success rate on Figure 3. would become narrower, and 
finding right parameter would be more difficult. If 
camera noise would increase, graph segment displaying 

100% success rate on Figure 4. would become narrower, 
and finding right parameter would be more difficult. 

It is shown that this simple algorithm can effectively 
detect chess moves, in non extreme conditions (with 
constant lighting). 

 

B. Board detection 

Before any further processing, it is necessary to locate 
the board, and the coordinates of individual squares. With 
the restriction that the board will not move, it is sufficient 
to perform detection only once at the beginning. After the 
board is detected, the functionality to determine which 
pixel belongs to particular square is provided. Such 
functionality is needed in further steps of processing and 
analysis. 

To avoid the influence of chess pieces on the board 
detection, the restriction that the board must be empty at 
the beginning is introduced. Before the process of board 
detection, the image preparation and preprocessing is 
needed. As the squares are red and green (a contrasting 
colors), the first step is to extract the red channel. Ideally, 
the red squares would have maximum value while the 
green squares would have minimum value of lightness 
intensity. Because of influence of the noise, that's not the 
case, and to obtain the binary image the adaptive 
threshold is used. For the purpose of robustness, the 
adaptive threshold parameters (window size and a 
subtraction constant) are determined iteratively at the 
runtime. After obtaining the binary image, the board 
detection is performed. 

The following approaches are considered and tested: 

•  Connected components - rejected due a lower 
percentage of success; the problem of determining 
borders and mapping of the squares. 

•  Hough transform - rejected because the method 
is unsuitable due to image distortion (lines are not 
straight); extremely sensitive to noise, the problem of 
grouping lines. 

• OpenCV embedded function - the chosen 
method, with certain modifications; validation and 
extrapolation. 

For detection of internal corners of the chessboard the 
OpenCV built-in function cvFindChessboardCorners is 
used. The function was originally intended for calibrating 
the camera, but due to its specific purpose it can be 
applied to a given problem. 

Although the function uses an adaptive threshold, 
which itself also adjusts the parameters, it turns out that 
function itself gives very poor results over the original 
image. Therefore, the function uses already prepared 
binary images. 

As the function only finds the inner corners, it is 
necessary to extrapolate those on the border. 
Extrapolation of external corners is done by reflection of 
the second layer over the first layer of the inner corners. 

 
Figure 3.  Chess figure movement detection success rate, when 
varying number of required static consecutive frames N, using 
fixed static frame threshold (T = 4×106). 

 
Figure 4.  Chess figure movement detection success rate, when 
varying static frame threshold T, using fixed number of required 
static consecutive frames (N = 8). 



Higher order extrapolation is possible but it gives worse 
results due to errors in the corners positions. 

It's not uncommon that the function returns a set of 
corners as a complete and correct, but it's actually 
deformed and incorrect. It is therefore necessary to 
validate the returned set of corners. Validation is done in 
a way to traverse through the points (corners) while 
trying to locate a new point on the current line. If the new 
point deviates more than a given threshold from the 
current line, the point is declared as the beginning of a 
new line. After traversing all the points, the number of 
lines is checked to be within the given limits. The 
parameters of the current line are obtained as the best 
approximation of a set of points by a line. Threshold is 
expressed as the relative measure compared to the 
average length of a line segment that is given by a ratio of 
a line length and the number of corresponding points. 

 
 

 
 
 
 
 
 
 
 
 

 
 

C. Feature extraction 

In order to determine the change on the board after 
one players move, two adjacent images (ones that 
determine this particular move) are subtracted. For 
example, on Figure 6. we can see that subtraction of 
previous and current state image, (a) and (b) gives result 
image (c) that is further converted in the grayscale image. 
Simple RGB to grayscale conversion results in (d). It can 
be seen that the red part of subtracted image is more 
prominent than the green one. Therefore, the RGB 
subtraction image is transformed into HSV (hue, 
saturation, value) space that is color-invariant and the V-
channel (e) is used for further processing. Next step is 
image binarization in order to eliminate noise and 
shadow. Later steps showed that the higher threshold is 
better, despite the fact that some figure pixels will be lost.  

In order to extract figure that had been moved, we 
should find minimal perimeter rectangle that contains key 
figure. The idea is to search the result binary image (f) 
pixel by pixel in order to determine coordinates of 
rectangle that contains the most of white pixels. The 
search is performed with pre-defined rectangle sides and 
search-step, i.e. the length of the rectangle shift after one 
iteration. Using lower values of shift will result in more 
accurate, but slower search. After complete search, the 
coordinates are found and the most of figure pixels are in 
rectangle defined with those coordinates (upper left 
corner) and its predefined side lengths. Next step is 

adjusting of rectangle side lengths. As long as there is a 
single outer white pixel near some of the rectangle side 
the rectangle is expanding. On the other hand, as long as 
there aren’t any white inner pixels near some of the 
rectangle side the rectangle is contracting. The resulting 
rectangle is shown on (g). 

Next step is to find whether the rectangle contains 
some figure or is empty. This can be easily done by 
subtracting image of the current position and image of 
empty chess board within area defined by the rectangle. If 
the energy of the subtracted part of picture is larger than 
some threshold, we assume that at current point, some 
figure is placed on area defined by the rectangle. Part of 
current state image bounded by the rectangle is used as 
classifier input and has to be classified. If the energy of 
subtracted image is lower than threshold, the reign of 
interest (part of image within the rectangle) is considered 
empty and no classification is needed since we know that 
the field is empty. 

Previous step shows how to deal with only one 
change between two moves in a game. But, in a particular 
move, there are always two changes on the board since 
figure that has been moved by a current player has its 
start and end position, hence the change appears in two 
places.  In order to find the next region of interest (part of 
image within the new rectangle), one should repeat 
previous procedure. Without any modifications, that 
would be useless, hence the same region of interest would 
be found. So, prior to repeating the procedure all pixels 
within the first region of interest should be set to zero, 
thus, they will represent an area with zero white pixels 
and repeating the procedure new region of interest will be 
found. This region represents the other area where change 
occurs.  

 

 

 

 

 

 

 

 

 

Problem of this approach is the situation when figures 
are overlapping. In this situation, the algorithm would 
find only one region of interest which would consist of 
real two regions of interest. So, it is impossible to 
determine which field is empty -start position of current 
player’s figure and which field is its end position. For this 
purpose upper camera was used because from its position 
it is easy to determine which fields are empty and which 
are not.  

 

 
Figure 6.  The segmentation process. 

 
Figure 5.  The correct set of corners. 



D. Detection of figure position 

One of problems that must be solved in order to create 
chess recognition system is to determine figure positions 
on chess board. Viewpoint of top camera gives good view 
on figure positions on chess board because overlap of 
figures is not possible. First image from top camera is 
transformed to gray scale color scheme and then process 
of detecting figures is conducted for each field of chess 
board where the energy of field is compared with 
empirical defined threshold. If energy of field is less than 
threshold then field is empty and in other case it is 
occupied with figure.  Energy of field is calculated based 
on sum of pixel values that belong to field. Value of pixel 
is defined on domain from 0 to 255. Where 0 represents 
black and 255 white color. Component is using result of 
board detection component that consists of coordinates of 
chess board fields. Based on coordinates of field it is 
possible to connect field in picture with field position on 
board, so as result of detection of figure positions the 
matrix is produced. Matrix dimensions are as dimensions 
of chess board (8x8) and each element defines one field 
with value 1 if field is occupied with figure and 0 if it is 
not. During implementation we used test set of pictures 
from top camera to define best threshold. Threshold is not 
uniquely defined and it depends on real environment and 
illumination of chess board.  

 

E. Figure recognition 

As there are six different figure types and two colors, 
the segmented figures are classified into one of 12 distinct 
classes. To obtain images suitable for training we used 
move sequences that have only one of the figures on the 
board. The preparation of move sequences was manual so 
we could obtain relatively low number of training images 
for each class. For that reason we decided to use Support 
Vector Machine (SVM) classifier [9][16] that shows good 
results even with the low number of training samples [10]. 
We used implementation provided with the OpenCV 
library. 

The quality of the classification was tested on 96 
image samples obtained by the segmentation process. 
Feature vector for each sample is obtained by converting 
each image to grayscale representation, scaling it to 32x32 
pixels and then putting each row side-by-side. No 
additional feature extraction was performed. The resulting 
1024 elements vectors with values ranging from 0 to 255 
were used as an input to SVM classifier. 

The Gaussian radial base function was used as a kernel 
for transforming the samples 

�(�� , ��) = ��� �−���� − ����� ,    � > 0 

where γ determines the width of the radial function. 
Large values of gamma correspond to narrow radial 
functions that too specific and usually result in large 
number of false negative classifications. In comparison, 
small values correspond to wide radial functions that are 
not specific enough, and so produce large number of false 
positives. The weight coefficients w and offset b should 
satisfy constraints 
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where ξ is the penalty for classification into a wrong 
class. The optimal weight coefficients minimize the 
criterion function  

�
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where the C parameter determines the penalty for each 
sample classified into a wrong class. Penalty is crucial for 
avoiding the over fitting of the classifier on the training 
samples.  

To find optimal values for the parameters γ and C, the 
initial set was divided into 60 samples for training and 36 
samples for testing (ratio of 5/3 for every class). Figure 8. 
shows that γ parameter with value from 0.1 to 10 performs 
equally well regardless of the penalty C, but that even 
better results could be achieved by using γ of 0.01 and 
penalty C appropriately high.  

 

 

 

 

 

 

 

 

 

 

 

The optimal parameters (γ = 0.01 and C = 100) were 
tested with varying ratio of training/testing samples. 
Figure 9. shows that good results are achieved even with 
the relatively low number of training samples. The 
fluctuations for ratios 6/8 and 7/8 are due to the low 
number of testing samples. 

 

 
Figure 8.  Number of succesfully classified samples in dependence on 

the parameters γ and C. 

 
Figure 7.  Image samples obtained by our segmentation method that 
we used for training the SVM classifier. There are eight samples for 

each of 12 classes. 



 

 

 

 

 

 

 

 

 

 

F. Graphical interface 

Figure 10. shows graphical user interface of chess 
vision project. It consists of virtual view of chess board 
with figures that represents state of chess board in real 
world. In bottom right corner is box that represents 
abstract view of chess board. Each element in box 
represents one fields of real chess board. 0 means that 
field is empty and 1 means that field is occupied with 
figure. The information is obtained from the
of figure positions“ component. In top right corner are 
button for next move and label that shows number of 
played movements since beginning of chess match.

 

 

 

 

 

 

 

 

 

 

III.  TESTING AND ANALYSIS

To test the efficiency of the system we performed 
analysis on the video sequence of 63 moves.
the moves do not correspond to the legal chess
there are situations where multiple figures appear
disappear from the board. In the following chapters we 
describe in detail some of the typical situations and give 
approximate statistics of success. 

 

A. Example test cases 

The Figure 11. shows several examples of how the 
board state changes between the moves. Figures (a) and 
(b) show a move where white bishop from the field C5 
moves to the field C7. Although it now
queen on the field C8, the result on the figure (c) shows 
that the system correctly identifies the situation because it 

Figure 9.  Percentage of succesfully classified samples when 
using different number of training samples.

Figure 10.  Graphical user inaterface for the ChessVision system.

graphical user interface of chess 
of virtual view of chess board 

with figures that represents state of chess board in real 
world. In bottom right corner is box that represents 
abstract view of chess board. Each element in box 
represents one fields of real chess board. 0 means that 

s empty and 1 means that field is occupied with 
obtained from the „Detection 

. In top right corner are the 
button for next move and label that shows number of 

f chess match. 

ESTING AND ANALYSIS 

To test the efficiency of the system we performed 
analysis on the video sequence of 63 moves. Majority of 

the legal chess moves, so 
there are situations where multiple figures appear or 

. In the following chapters we 
describe in detail some of the typical situations and give 

several examples of how the 
board state changes between the moves. Figures (a) and 
(b) show a move where white bishop from the field C5 
moves to the field C7. Although it now covers the black 

, the result on the figure (c) shows 
the system correctly identifies the situation because it 

is apparent from the top camera that the 
change the position, so it is safe to assume that the queen 
is in the same position as the move before.

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures (d) and (c) show a different sequence of 
moves where several figures change position. In this case 
the system correctly identifies the 
king on the field G1, black bishop on field D4 and white 
rook on the field A1, but it fail
black bishop on the field G7 with the black pawn on the 
field G6 and the white pawn on the field G7. Instead, it 
identifies them as two black bishops. The reason is that 
the occupancy of the field G7 didn’t change (it is still 
occupied but with a different figure) and 
overlap of the two figures the 
incorrectly classified front black pawn as a black bishop.

 

B. Analysis of achieved accuracy

Table I. shows the success rate of various parts of the 
chess reconstruction process as obtained from the test 
video sequence.  As expected, rather high success rate can 
be achieved when there is no significant overlap between 
the figures as viewed from the side camera. The same is 
valid for the process of segmentation and recognition. On 
the other hand, because of the use of top view camera, we 
achieved perfect results when detecting the occupancy of 
a particular field. 

 

 

 

 

 

 

IV.  CONLUSION

The goal of this paper was to describe implementation 
of a system that is able to reconstruct a chess board state 
based solely on video sequences obtained from two 
cameras. We have used standard chess figures with 

TABLE I.  SUCCESFULLY IDENTIFIE

Move reconstruction (no overlap)
Move reconstruction 
Figure segmentation 
Figure classification 
Field occupation detection 
 

 
Percentage of succesfully classified samples when 

umber of training samples. 

 
Graphical user inaterface for the ChessVision system. 

Figure 11.  Two examples of chess moves
the states before the move, (b) and (e) after the move, and (c) and 

(d) states after the move as recognized by the system.

is apparent from the top camera that the queen did not 
change the position, so it is safe to assume that the queen 
is in the same position as the move before. 

Figures (d) and (c) show a different sequence of 
moves where several figures change position. In this case 
the system correctly identifies the disappearance of black 
king on the field G1, black bishop on field D4 and white 
rook on the field A1, but it fails to detect the swap of 
black bishop on the field G7 with the black pawn on the 
field G6 and the white pawn on the field G7. Instead, it 
identifies them as two black bishops. The reason is that 
the occupancy of the field G7 didn’t change (it is still 

ied but with a different figure) and because of the 
the two figures the segmentation subsystem 

incorrectly classified front black pawn as a black bishop. 

Analysis of achieved accuracy 

Table I. shows the success rate of various parts of the 
chess reconstruction process as obtained from the test 

As expected, rather high success rate can 
be achieved when there is no significant overlap between 

e side camera. The same is 
valid for the process of segmentation and recognition. On 
the other hand, because of the use of top view camera, we 
achieved perfect results when detecting the occupancy of 

ONLUSION 

The goal of this paper was to describe implementation 
of a system that is able to reconstruct a chess board state 
based solely on video sequences obtained from two 
cameras. We have used standard chess figures with 

UCCESFULLY IDENTIFIED EVENTS 

rlap) 42 / 44 = 95.5 % 
53 / 63 = 84.1 % 
58 / 63 = 92.1 % 
57 / 63 = 90.5 % 
63 / 63 = 100% 

 
Two examples of chess moves. Images (a) and (d) show 

the states before the move, (b) and (e) after the move, and (c) and 
(d) states after the move as recognized by the system. 



adopted chess board (red and green squares). Whole 
system was written in C++ and OpenCV library was used. 
System is divided into few modules that communicate 
with each other over a controller module.  Extraction of 
static pictures delivers picture that identify each figure 
move. For each move we detect positions on the board 
from top-view camera and extract figures bounding box 
from side-view camera. Recognition is made by using 
kernel SVM classifier. Our chess vision system is a 
memory state system which updated chess states only for 
new moves. Therefore if new moves cover old figures in 
side-view camera memory is used for chess state 
reconstruction. But if a new move is covered with old 
figures chess state reconstruction from side-view camera 
is not possible. Top view camera is only used for detection 
of moves in a chess game. Chess vision system showed 
solid performance on our limited number of video 
sequences.  
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